Archives 2014

Rate what subscribers hear: Voice quality tests

Mean Opinion Scores (MOS) descripe the average between perfect pitch and tone deaf

Mean Opinion Scores (MOS) describe the average between perfect pitch and tone deaf

Every September tensions are running high at Germany’s mobile network operators. At this time of year the special interest magazine “Chip” publishes its annual mobile network test. A good score in this self proclaimed “toughest mobile network test in Germany” is a boost to the sales departments, a bad result a public relations problem. Even in the age of smartphones and LTE, voice quality is a benchmark in this trial, as Chip stated in 2013: “To most users voice calls are more important than LTE.”

Rating of voice quality is a subjective matter

A conclusion that is confirmed by Qosmotec’s executive board member Dr. Dieter Kreuer: “No matter how important data rates have become, the main purpose of mobile networks is to enable voice calls.” But testing voice quality in fully automated test systems is something easier said than done. Unlike human beings automated test systems cannot distinguish whether a sound pattern is interrupted by signal loss or because a speaker has finished his sentence. But how to measure the quality of sounds?

Parameters of a PESQ voice quality test in LTS

In a voice quality test case users can select any voice sample and specify a MOS limit, which is relevant for the test assessment

The acurate ear of a musician is more likely to have perfect pitch, than somebody, who has stayed too long in the discotheque the evening before. And exactly this is the key for the so called “Mean Opinion Score” (MOS), the most important performance indicator for the rating of voice transmission. Based on a standardized algorithm, it averages the opinion that you would get, when a certain number of representatively selected people would listen to the same sound sample. Each of them would have a different opinion, but in total, their rating would give a good picture on the sound quality. It is also distinguished between a referenced rating, e.g., direct comparison between the original and the transmitted sound, and the unreferenced rating, which means the rating of the transmitted sample without knowledge of the original source.

Standardized solutions for voice quality tests

Voice quality testing is an integral part in Qosmotec’s test automation system LTS. Dr. Kreuer explains how Qosmotec has addressed the issue: “To make voice quality tests in LTS possible, we integrated the algorithm for tests according to the PESQ standard.” Perceptual Speech Quality (PESQ) is the standard that has been defined by the ITU Telecommunication Standardization Sector (ITU-T) to rate voice as described above. In LTS, we use referenced voice testing, so that results really reflect the transmission via the mobile network and are not influenced by badly recorded voice samples on the input side. Basically, the tester can use any voice sample in any language for testing. For example, the PESQ mechanism can also be used to compare voice samples with each other. If a tester wants to check for example, wether an announcement is correct (or if it is spoken in the correct language),he can use PESQ to compare the received message with the expected announcement. If those differ from each other, this will lead to a bad Mean Opinion Score.  For real network quality tests, we recommend to use a sample that comprises various languages as well as combinations of men and women speakers, which is ideal to provide a Mean Opinion Score with high granularity.

Results of a PESQ voice quality test in LTS

LTS lists all voice quality KPIs and depicts them in graphics.

Challenge on the hardware setup

However, integrating a PESQ algorithm into the LTS software alone does not solve all issues concerning voice quality tests in automated end-to-end systems. The hardware setup also has to be taken into consideration. With commercial handsets, it is almost impossible to execute automated tests for voice quality, because analogue voice would have to be digitalized first. This in turn leads to an additional loss of quality that is not caused by network transmission and is therefore irrelevant for testing. For this reason, Qosmotec uses industrial terminals for voice testing instead of commercial phones. These have a digital sound interface and therefore allow recording the voice as it is received.

Evolving technologies require new rating mechanisms

To ensure Qosmotec’s customers can avoid being slated in the press for their speech quality, Kreuer and his team are making LTS fit for the future of voice testing: “Testing various facilities of voice, for example, High Definition Voice or Voice over LTE, which is going to come soon, are the next issues for voice tests. Our task is to provide easy and effective mechanisms to test these technologies. We are currently integrating the new POLQA (Perceptual Objective Listening Quality Analysis) mechanism which adopts PESQ for VoIP and is used to test voice transmission over packet switched standards.”

Signal strength and more: Virtual drive testing

ICE3_Dernbachertunnel

The ICE high speed line Cologne – Frankfurt was one of the first tracks completely equipped with GSM-R technology

The Westerwald low mountain range on right banks of the river Rhine is not the obvious place to build a high-speed railway line. However, over steep climbs, through long tunnels, cutting through hills, and over viaducts arching across small valleys run the trains of the Cologne-Frankfurt high-speed railway with speeds up to 300 km/h. What is a master-piece of civil engineering is a nightmare for network operators. Signal strength is impeded by all sorts of disturbances and sufficient coverage hard to achieve, but still vital for some.

GSM-R is a very special wireless technology to control high speed trains and ensure communication between railway staff. The operator has to ensure that there is no communication loss along the entire line, because the communication is security relevant and a disconnected call may have fatal consequences.

Still, it was on the above described line through the Westerwald mountains where the operator of the German GSM-R network noted that the connection of a Voice Group Call was always interrupted in a certain area.  To detect what caused the interruption proved to be difficult. Test drives were nearly impossible, as test trains are only allowed to drive with very low speed and the whole track has to be closed for them. The solution to this problem was Qosmotec’s virtual drive test concept.

“Signal strength emulation is more than ramping attenuators up and down”

Qosmotec was in 2004 the first company to offer network operators a solution that enabled them to emulate drive tests in their test lab and achieve complete reproducibility of radio conditions. For this, we have helped ourselves with a technique that was anything else but new: The use of digital step attenuators to control the signal strengths received from several base stations. We enhanced it with a control software that is able to model real life like conditions and to calculate the correct settings, so that tests in the lab really reflect what subscribers experience in the field.

“Signal strength emulation is a very powerful method for reproducing radio conditions. The typical misconception is that it is only about ramping up one attenuator while ramping down another. It is much more than that”, explains Qosmotec’s managing director Mark Hakim. By means of controlling attenuators based on physical models, it is possible to simulate the most impacting radio conditions like signal degradation, shadowing, and even fast fading. Also 3D antenna pattern can be perfectly modeled in the lab – without making any change in the radio part. German news channel N24 took note of Qosmotec’s virtual drive test approach in September 2013.

This virtual drive test concept helped to reconstruct the GSM-R network operator’s problem. It was possible to extract the conditions, under which the call disruption occurred, from radio measurements taken in the problem area, and to replay the whole scenario on the attenuator hardware at the DB test center. With this reconstruction the reason could be found. A cell change after a hill, where a frequency had been reused, was not successful – a result that became only obvious in execution, not in network planning.

Funkschau_1Field studies with customers

Another example was a tunnel scenario that was re-created with a large European network operator in their test lab. In this case, all standardized channel emulation scenarios failed to reproduce a situation where data connections got lost in high speed trains, while they were stable in normal trains. But the situation described by the customer was almost trivial to re-create with the virtual drive test approach. We detected exactly under which radio conditions the problem occurred and how it could be solved. A detailed description of this use case has been published in the magazine “Funkschau” in 2010.

Prediction of signal propagation in cities

The real drive test through the city of Munich (red) brings almost identical result than the prediction for the route (green)

The real drive test through the city of Munich (red) brings almost identical result than the prediction for the route (green)

Together with the institute of theoretical information technology at Aachen University, Qosmotec also developed a mechanism to emulate drive tests through real cities. “Our propagation algorithms take into account radio wave reflections, deflection and diffractions on cities and can calculate signal strength and multipath effects in any location in a city”, explains Dr. Michael Reyer the research activities that contribute to our QPER feature for predicted drive tests. With these calculations, emulations can be done, based on building data of any city. Comparisons between a real drive test executed in the city of Munich and a virtual drive test show an impressive compliance of the completely theoretical approach with reality. Currently, Qosmotec runs a new project to adapt those algorithms for Car-to-Car and Car-to-Infrastructure communication. This joint research activity is funded by the German ministry for economics BMWi.

Versatility that goes beyond signal strength simulation

Over the years, the Qosmotec virtual drive test approach has become popular with mobile network operators – but infrastructure vendors have adopted the idea as well. Mark Hakim explains the success of Qosmotec’s methodology: “It is so simple to use and goes far beyond standard conformance test methodologies. With a few mouse clicks, it offers a high versatility in creating test scenarios that have already revealed a lot of problems which would have remained undetected otherwise”. Signal strength simulation is still the most important simulated propagation effect, but it is not restricted to that. With LTE and the MIMO technology coming up, Qosmotec has extended the approach to simulate phase differences of multiple antennas on sender and receiver side. Currently, we are developing a solution to emulate even multipath fading. “This will be an interesting solution, especially for wireless technologies restricted to short-distance communication like WiFi or Car-to-X communication technology”, says Mark Hakim. First results on this are expected for the first quarter of 2015. “We plan to introduce our solution at the Mobile World Congress in March 2015 in Barcelona”.

 

Dealing with data rates from UMTS to LTE

While automatic network testing today is focused on LTE, ten years ago Qosmotec had to deal with the introduction of the UMTS networks in Europe. The newly founded company had just received the order to supply a test system for Europe’s first UMTS network and had to integrate a new technology into its test systems, which was nowhere available in the field. One of the main challenges at this time was a very simple, but severe problem: “There were no UMTS phones available in Germany in 2004. Luckily, Aachen is just on the border to Belgium, where we got hold of a Nokia 6650, one of the first available UMTS mobiles, to develop our first UMTS test system with”, says Mark Hakim.

The Nokia 6650 from Belgium which was used by Qosmotec for the company’s first UMTS test system

The Nokia 6650 was used by Qosmotec for the development of the first UMTS test system

Working with handsets and mobile phones

Integrating new technologies into its test system is an issue Qosmotec has come to deal with almost on a daily basis. “Network operators use our test systems to run laboratory tests with bleeding edge technologies that have yet to be rolled out. We have to see, how we get access to the latest phone models – sometimes even in pre-commerical state – or to industrial modems with latest chipset to integrate them in our test system,” explains Mark Hakim. When Qosmotec supplied H3G with a test system to prepare the roll out of Europe’s first UMTS network in Italy, they were asked to test video calls. “That was the feature which was used to advertise 3G technology at the time. We solved this by using a Motorola A835 phone – a mobile with a really large display and an even bigger body. We integrated 16 of these phones in a rack and used them for integrated testing,” remembers Mark Hakim.

Testing high data rates and QoS

Qosmotec's LTS test automation system as a rack setup to control large numbers of UEs in parallel

Qosmotec’s LTS test automation system as a rack setup to control large numbers of UEs in parallel

Even though videos calls have yet to make their breakthrough, data rates became a huge challenge for Qosmotec, when High Speed Packet Access (HSPA) or 3.5G succeeded UMTS. It was the time, when data rates really mattered for the first time. HSPA provided higher data rates up to 21Mbit/s on the downlink, which brought laptop users into play: “The idea was to make laptop users more mobile, allowing them mobile access to the internet. The higher data rates were realized with data cards,” says Hakim. While a laptop used only one of these cards, Qosmotec had to find a solution to test with several of these cards simultaneously. “We developed a data card control server with 16 PCMCIA slots, so we could control 16 data cards at the same time to emulate laptop users within the network.”

Dealing with smartphones and LTE

Another important aspect of HSPA was quality of service. Network operators had started to promise certain data rates to their subscribers, meaning they had to ensure that these rates were constantly available. “We tackled this issue by developing a feature that made it possible to request a certain data rate from the network and the test system could verify whether this specific data rate was actually provided to a specific subscriber,” says Hakim. Since then, the issue of constantly available data rates has been intensified by LTE and LTE Advanced. The latter being promoted with 150 Mbit/s, and specified with a peak rate of 3 Gbit/s.

“First of all, a test system has to verify that the promised data rates can be constantly provided by the network. Therefore, a test system for these technologies has to measure how often this peak is actually achieved and for what time slot it is kept. This is what we are working on, analysis methods that show the use of the data rate,” explains Hakim, before he draws attention to  another topic: The changes in subscriber behaviour, caused by the introduction of smartphones. “The introduction of smartphones and the apps running on smartphones had massive impact on subscriber behaviour. Therefore, it became import to test the various protocols that are used by apps as well.” However, this challenge offered Qosmotec an opportunity to gain independence from the availability of mobile phones: “We addressed this by developing our own app, Qosdroid, that runs on the smartphone itself. This allows us to use smartphones to test networks. The app can be installed on any kind of Android phone. This means we no longer have to chase the latest available phones, as we can now use any phone running an Android OS.”

Voice tests come back

Looking ahead, Hakim believes the next challenge will be the combination of data rates with voice testing: “Voice testing is coming back. Not as we have known it in the past, which was relevant for GSM testing, but testing various facilities of voice, for example, high definition voice or voice over LTE, which is going to come soon. Our task is to provide easy and effective mechanisms to test these technologies. Regarding voice quality testing, we have to work with other mechanisms, like POLQA which is more suitable for VoIP transmissions than the PESQ standard. This is what we are working on at the moment.”

Qosmotec – Test Automation since 2004

Mark Hakim, Dr Dieter Kreuer and Axel C. Voigt (lefto right) present the first AIS handover test system in 2004

Mark Hakim, Axel C. Voigt, and Dr Dieter Kreuer present the first AIS handover test system in 2004

10 years Qosmotec – over the course of the next 10 weeks, we want to tell ten interesting stories about our company, our different fields of activity and our technological achievements.

How it all started

In January 2004 Dr. Dieter Kreuer, Mark Hakim and Axel Voigt founded Qosmotec. “We knew each other a while before Qosmotec: Dieter supervised my diploma thesis in 1998 and I did the same three years later for Axel, when he finished his studies”, remembers Mark Hakim. “All the three of us were convinced that it is possible to make end-to-end test automation equipment for wireless networks a commercial success. Up to that time, this kind of activity was – if enforced at all – still stuck in some self-made and prototype developments by the network operators.”

Aachen's local newspapers quickly took note of Qosmotec's business scheme

Aachen’s local newspapers quickly took note of Qosmotec’s business scheme

To be prepared as good as possible, the three founders participated in a business plan contest in Aachen, which was carried out for the first time that year. “Our ideas gained approval, and we ended up as one of three winners. By the way: Qosmotec was the only company of the rewarded ones that was actually founded,” lets Hakim know smiling.

Over the years, Qosmotec has established substantial reputation: Dr. Dieter Kreuer in his position as Qosmotec director was listed as one of the 500 most important people in the Rhineland region in 2012.

Successful co-operations

Dr Dieter Kreuer was recognised as one of the 500 most important people in the Rhineland region

Dr Dieter Kreuer was recognised as one of the 500 most important people in the Rhineland region

But even the best business concept would be worthless without engaged and convinced co-operation partners. Right after founding the company, we established sales partnerships with Delo Instruments in Italy, Artiza Networks in Japan and Teraquant Corporation in the US which all generated first business within a few months. Based on these experiences, Qosmotec maintains a network of local sales agents, who know and understand the customer needs, and who can help them in any kind of questions and problems. “It is very important for us to have these front-ends to most of our customers. The feedback of our sales partners has helped us a lot to improve our products over the time”, honors Mark Hakim the work of Qosmotec’s sales partners. Today, our most successful co-operation is with FSTC consulting from Vienna, who have taken over the responsibility for Austria, Germany, and several other European countries.

On the technological side, Qosmotec is not on its own. The most outstanding and closest co-operation with the electronic designer Manfred Kopp from Aachen persists already since 2004. “Manfred and his team have often helped us out with tiny and intelligent designed circuits that are custom made for our products”, says Mark Hakim.

Access to internationally renown research facilities

The big locational advantage of Aachen is the proximity to RWTH Aachen University that is known world-wide for its excellent research capabilities. The faculties of electronical engineering and computer sciences contain various institutes and chairs that deal with mobile communication. The institute for theoretical information technology under the direction of Prof. Rudolf Mathar has been working together with Qosmotec in various research projects. One of their biggest contributions to Qosmotec products was their development on ray tracing algorithms that enables to predict signal propagation in urban areas and enable us to emulate radio conditions in the test lab taking into account building environments of real cities. Mark Hakim speaks about the newest joint activities: “We have just set up a new project about radio signal propagation in Car to Car communication with our research partner. This is a very challenging area with very different requirements compared to public mobile networks. We expect a high demand on test systems there in the near future. ”

Qosmotec’s data card control server for PCMCIA cards

Qosmotec’s data card control server for PCMCIA cards

Broad customer basis

Qosmotec has a huge variety of customers with a broad range of application areas, and was involved in very interesting activities in the telecom world. In 2004, Qosmotec participated in testing the world wide first UMTS network that was established in Italy. One year later, we oversaw the roll-out of the first GSM-R network in Germany with our test systems. Whether it has been Toll Collection or Self-Organizing Networks – Qosmotec has dealt with all issues concerning wireless networks. Currently, we are working on supporting Car-to-Car and Car-to-Infrastructure communication with our test systems – quite a challenge, because it changes Qosmotec target market: “With this, we are more addressing the automotive industry than suppliers and operators of public networks.”

Some of our developments have meanwhile become out-of date again. Mark Hakim remembers: “We have been involved also in test systems for GSM-BOS, a special security standard that was never introduced. Instead, TETRA prevailed”. Other things were only of interest for a limited lifetime. For example our datacard control server – a system that was able to control up to 16 PCMCIA datacards in parallel which were soon replaced by USB sticks. Mark Hakim concludes: “These examples show how fast the telecom business moves. We have always been flexible enough to react on these quick changes. After ten years we are experienced enough to expect the unexpected and react adequately to challenges in front of us.”

Watch 10 Years Experience in Mobile Network Testing

To mark the occasion of our 10th anniversary, we have made a small video that takes a look back at Qosmotec being involved mobile network testing for the last decade. It is currently running at our exhibition booth at Mobile World Congress 2014 and we have also uploaded the the video to our youtube channel.

In case you can not make it to Barcelona, you can watch the video either on youtube or can click on the video below:

Ten years experience in mobile network testing – Ten reasons to test with Qosmotec

In 2014, Qosmotec looks back at ten years of experience in mobile network testing. Ten years means ten good reasons to test mobile networks with Qosmotec systems:

  • Precision: Our test automation systems enable the exact reproduction of test sequences in timing and radio conditions, improving the test quality compared to manual tests.
  • Completeness: Our systems allow testers to emulate subscribers, radio propagation environment, and even mobile networkinfrastructure, making it possible to focus either on devices, radio network or network services, according to your individual requirements.
  • Versatility: We offer automation solutions for functional, load, regression, and performance tests in all wireless technologies from GSM to LTE, for the test lab and the field network.
  • Efficiency: Qosmotec’s test automation systems speed up the testing process and can be used 24/7, thus reducing your time to market.
  • Flexibility: Our solutions are adaptable to individual testing needs. They are modular and can be customized to meet user-specific requirements.
  • End-User experience: Our test set-ups take the customer’s point of view and allow you to improve your services as they are perceived by your subscribers.
  • Realism: Emulate real-world channel conditions in the laboratory by using our channel emulator.
  • Cost-Reduction: Every test scenario can be replayed from a database of test cases. Automated execution of regression tests allows engineers to concentrate on bug-fixing and on analysis of new features.
  • Experience: Our management team has been working in wireless network testing since the 1990s, and knows the requirements of network operators and infrastructure vendors.
  • Value for money: We provide a cost-efficient, custom-tailored automation proposal suited to your individual demands

Find out more about Qosmotec and our products.